函数表示方法经典例题
第一篇:函数表示方法经典例题
不等式的证明方法经典例题
不等式的证明方法
不等式的证明是高中数学的一个难点,证明方法多种多样,近几年高考出现较为形式较为活跃,证明中经常需与函数、数列的知识综合应用,灵活的掌握运用各种方法是学好这部分知识的一个前提,下面我们将证明中常见的几种方法作一列举。
a2b2ab注意ab2ab的变式应用。常用 (其中a,bR)来解决有2222关根式不等式的问题。
一、比较法
比较法是证明不等式最基本的方法,有做差比较和作商比较两种基本途径。
1、已知a,b,c均为正数,求证:
111111 2a2b2cabbcca
二、综合法
综合法是依据题设条件与基本不等式的性质等,运用不等式的变换,从已知条件推出所要证明的结论。
2、a、b、c(0,),abc1,求证:
4a2b2c24413
3、设a、b、c是互不相等的正数,求证:abcabc(abc)
4、 知a,b,cR,求证:
a2b2b2c2c2a2(abc)
211(1)(1)9xy
5、x、y(0,)且xy1,证:。
6、已知a,bR,ab1求证:11111. ab9
三、分析法
分析法的思路是“执果索因”:从求证的不等式出发,探索使结论成立的充分条件,直至已成立的不等式。
7、已知a、b、c为正数,求证:
2(ababc3ab)3(abc)23
8、a、b、c(0,)且abc1,求证abc3。
四、换元法
换元法实质上就是变量代换法,即对所证不等式的题设和结论中的字母作适当的变换,以达到化难为易的目的。
9、b1,求证:ab(1a2)(1b2)1。
22xy1,求证:2xy2
10、
114. abbcac1222
212、已知1≤x+y≤2,求证:≤x-xy+y≤3.
211、已知a>b>c,求证:
13、已知x-2xy+y≤2,求证:| x+y |≤10.
14、解不等式5x221x1>
2
215、-1≤1x-x≤2.
五、增量代换法
在对称式(任意互换两个字母,代数式不变)和给定字母顺序(如a>b>c)的不等式,常用增量进行代换,代换的目的是减少变量的个数,使要证的结论更清晰,思路更直观,这样可以使问题化难为易,化繁为简.
16、已知a,bR,且a+b = 1,求证:(a+2)+(b+2)≥
六、利用“1”的代换型
2225. 2111已知a,b,cR,且 abc1,求证: 9.abc
17、
七、反证法
反证法的思路是“假设矛盾肯定”,采用反证法时,应从与结论相反的假设出发,推出矛盾的过程中,每一步推理必须是正确的。
18、若p>0,q>0,p+q= 2,求证:p+q≤2.证明:反证法 331
19、已知a、b、c(0,1),求证:(1a)b,(1b)c,(1c)a,不能均大于4。
20、已知a,b,c∈(0,1),求证:(1-a)b, (1-b)c, (1-c)a 不能同时大于
1。
421、a、b、cR,abc0,abbcca0,abc0,求证:a、b、c均为正数。
八、放缩法
放缩时常用的方法有:1去或加上一些项2分子或分母放大(或缩小)3用函数单调性放缩4用已知不等式放缩
22、已知a、b、c、d都是正数,求证:1<<2.
bdac+++
abcbcdcdadab
23、nN,求证:*2(n11)112131n2n1。
24、A、B、C为ABC的内角,x、y、z为任意实数,求证:x2y2z22yzcosA2xzcosB2xycosC。
证
九、构造函数法
构造函数法证明不等式24 设0≤a、b、c≤2,求证:4a+b+c+abc≥2ab+2bc+2ca.
25、 设a、b∈R,且a+b =1,求证:(a+2)+(b+2)≥222225. 2
26、设a>0,b>0,a+b = 1,求证:2a1+2b1≤22. 1.实数绝对值的定义:
|a|=
这是去掉绝对值符号的依据,是解含绝对值符号的不等式的基础。
2.最简单的含绝对值符号的不等式的解。
若a>0时,则
|x|
|x|>a x<-a或x>a。
注:这里利用实数绝对值的几何意义是很容易理解上式的,即|x|可看作是数轴上的动点P(x)到原点的距离。
3.常用的同解变形
|f(x)|
|f(x)|>g(x) f(x)<-g(x)或f(x)>g(x);
|f(x)|<|g(x)| f2(x)
4.三角形不等式:
||a|-|b||≤|a±b|≤|a|+|b|。
第二篇:高中数学不等式证明的常用方法经典例题
关于不等式证明的常用方法
(1)比较法证不等式有作差(商)、变形、判断三个步骤,变形的主要方向是因式分解、配方,判断过程必须详细叙述如果作差以后的式子可以整理为关于某一个变量的二次式,则考虑用判别式法证
(2)综合法是由因导果,而分析法是执果索因换元法、放缩法、反证法、函数单调性法、判别式法、数形结合法换元法主要放缩性是不等式证明中最重要的变形方法之一.有些不等式,从正面证如果不易说清楚,可以考虑反证法 凡是含有“至少”“惟一”或含有其他否定词的命题,适宜用反证法 典型题例
例1证明不等式1
121
31
n2n(n∈N*) 知识依托 本题是一个与自然数n有关的命题,首先想到应用数学归纳法,另外还涉及不等式证明中的放缩法、构造法等 例2求使xy≤axy(x>0,y>0)恒成立的a 知识依托 该题实质是给定条件求最值的题目,所求a的最值蕴含于恒成立的不等式中,因此需利用不等式的有关性质把a呈现出来,等价转化的思想是解决题目的突破口,然后再利用函数思想和重要不等式等求得最值例3已知a>0,b>0,且a+b=1求证(a+11)(b+)ba证法一 (分析综合法)证法二(均值代换法)证法三(比较法)证法四 (综合法)证法五(三角代换法) 巩固练习 已知x、y是正变数,a、b是正常数,且ab=1,x+y的最小值为xy设正数a、b、c、d满足a+d=b+c,且|a-d|<|b-c|,则ad与bc的大小关系是 若m<n,p<q,且(p-m)(p-n)<0,(q-m)(q-n) </n,p<q,且(p-m)(p-n)<0,(q-m)(q-n)
312已知x,y,z∈R,且x+y+z=1,x2+y2+z2= x,y,z∈[0,] 23(1)a2+b2+c2≥证明下列不等式bc2ca2ab2z≥2(xy+yz+zx) xyabc
yzzxxy111(2)若x,y,z∈R+,且x+y+z=xyz,则≥2() xyzxyz(1)若x,y,z∈R,a,b,c∈R+,则
已知i,m、n是正整数,且1<i≤m </i≤m
m<miai
</miai
n (2) (1+m)n>(1+n)m
若a>0,b>0,a3+b3=2,求证 a+b≤2,ab≤1不等式知识的综合应用
典型题例
例1用一块钢锭烧铸一个厚度均匀,且表面积为2平方米的正四棱锥形有盖容器(如右图)设容器高为h米,盖子边长为a米,(1)求a关于h的解析式;(2)设容器的容积为V立方米,则当h为何值时,V最大?求出V的最大值(求解本题时,不计容器厚度)
知识依托本题求得体积V的关系式后,应用均值定理可求得最值
例2已知a,b,c是实数,函数f(x)=ax2+bx+c,g(x)=ax+b,当-1≤x≤1时|f(x)|≤
1(1)|c|≤1;
(2)当-1 ≤x≤1时,|g(x)|≤2;
(3)设a>0,有-1≤x≤1时, g(x)的最大值为2,求f(x)
知识依托 二次函数的有关性质、函数的单调性,绝对值不等式
例3设二次函数f(x)=ax2+bx+c(a>0),方程f(x)-x=0的两个根x
1、x2满足0<x1<x2(1)当x∈[0,x1)时,证明x<f(x)<x1;
</x1<x2(1)当x∈[0,x1)时,证明x<f(x)<x1;
(2)设函数f(x)的图象关于直线x=x0对称,证明 x0<
x
1巩固练习
定义在R上的奇函数f(x)为增函数,偶函数g(x)在区间[0,+∞)的图象与f(x)的图象重合,设a>b>0,给出下列不等
式,其中正确不等式的序号是()
①f(b)-f(-a)>g(a)-g(-b)②f(b)-f(-a)g(b)-g(-a)④f(a)-f(-b)
B②④
C①④
②③
下列四个命题中①a+b≥
2ab②sin2x+
19
4≥4③设x,y都是正数,若则x+y的最小值是12④=1,2
xysinx
若|x-2|<ε,|y-2|<ε,则|x-y|<2ε,其中所有真命题的序号是__________
已知二次函数 f(x)=ax2+bx+1(a,b∈R,a>0),设方程f(x)=x的两实数根为x1,x2
(1)如果x1<2<x2-1; (2)如果|x1|<2,|x2-x1|=2,求b的取值范围</x2
设函数f(x)定义在R上,对任意m、n恒有f(m+n)=f(m)·f(n),且当x>0时,0<f(x)<
</f(x)<
1(1)f(0)=1,且当x<0时,f(x)>1;
(2)f(x)在R上单调递减;
(3)设集合A={ (x,y)|f(x2)·f(y2)>f(1)},集合B={(x,y)|f(ax-g+2)=1,a∈R},若A∩B=,求a的取值范围
2x2bxc
已知函数f(x)= (b<0)的值域是[1,3],
2x1
(1)求b、c的值;
(2)判断函数F(x)=lgf(x),当x∈[-1,1]时的单调性,并证明你的结论;(3)若t∈R,求证 lg
711≤F(|t-|-|t+|)≤566数列与不等式的交汇题型分析及解题策略
【命题趋向】
数列与不等式交汇主要以压轴题的形式出现,试题还可能涉及到与导数、函数等知识综合一起考查.主要考查知识数列的通项公式、前n项和公式以及二者之间的关系、等差数列和等比数列、归纳与猜想、数归纳法、比较大小、不等式证明、参数取值范围的探求,在不等式的证明中要注意放缩法的应用. 【典例分析】
题型一 求有数列参与的不等式恒成立条件下参数问题
求得数列与不等式结合恒成立条件下的参数问题主要两种策略:(1)若函数f(x)在定义域为D,则当x∈D时,有f(x)≥M恒成立f(x)min≥M;f(x)≤M恒成立f(x)max≤M;(2)利用等差数列与等比数列等数列知识化简不等式,再通过解不等式解得. 11
1【例1】等比数列{an}的公比q>1,第17项的平方等于第24项,求使a1+a2+…+an>…恒成立的正整数n的取
a1a2an值范围.【例2】(08·全国Ⅱ)设数列{an}的前n项和为Sn.已知a1=a,an+1=Sn+3n,n∈N*.
(Ⅰ)设bn=Sn-3n,求数列{bn}的通项公式;(Ⅱ)若an+1≥an,n∈N*,求a的取值范围.【点评】 一般地,如果求条件与前n
项和相关的数列的通项公式,则可考虑Sn与an的关系求解
题型二 数列参与的不等式的证明问题
此类不等式的证明常用的方法:(1)比较法,特别是差值比较法是最根本的方法;(2)分析法与综合法,一般是利用分析法分析,再利用综合法分析;(3)放缩法,主要是通过分母分子的扩大或缩小、项数的增加与减少等手段达到证明的目的.
【例3】 已知数列{an}是等差数列,其前n项和为Sn,a3=7,S4=24.(Ⅰ)求数列{an}的通项公式;(Ⅱ)设p、q都是正整
1数,且p≠q,证明:Sp+q<(S2p+S2q).【点评】 利用差值比较法比较大小的关键是对作差后的式子进行变形,途径主要有:(1)
2因式分解;(2)化平方和的形式;(3)如果涉及分式,则利用通分;(4)如果涉及根式,则利用分子或分母有理化.【例4】 (08·安徽高考)设数列{an}满足a1=0,an+1=can3+1-c,c∈N*,其中c为实数.(Ⅰ)证明:an∈[0,1]对任意n∈N*11成立的充分必要条件是c∈[0,1];(Ⅱ)设0<c<,证明:an≥1-(3c)n1,n∈n*;(ⅲ)设0<c<,证明:a12+a22+…+an
</c<,证明:an≥1-(3c)n1,n∈n*;(ⅲ)设0<c<,证明:a12+a22+…+an
2332
>n+1-n∈N*.
1-3c
题型三 求数列中的最大值问题
求解数列中的某些最值问题,有时须结合不等式来解决,其具体解法有:(1)建立目标函数,通过不等式确定变量范围,进而求得最值;(2)首先利用不等式判断数列的单调性,然后确定最值;(3)利用条件中的不等式关系确定最值.
【例5】 (08·四川)设等差数列{an}的前n项和为Sn,若S4≥10,S5≤15,则a4的最大值为______.
【例6】 等比数列{an}的首项为a1=2002,公比q=-.(Ⅰ)设f(n)表示该数列的前n项的积,求f(n)的表达式;(Ⅱ)当n
取何值时,f(n)有最大值.
题型四 求解探索性问题
数列与不等式中的探索性问题主要表现为存在型,解答的一般策略:先假设所探求对象存在或结论成立,以此假设为前提条件进行运算或逻辑推理,若由此推出矛盾,则假设不成立,从而得到“否定”的结论,即不存在.若推理不出现矛盾,能求得在范围内的数值或图形,就得到肯定的结论,即得到存在的结果.
【例7】 已知{an}的前n项和为Sn,且an+Sn=4.(Ⅰ)求证:数列{an}是等比数列;(Ⅱ)是否存在正整数k,使
【点评】在导出矛盾时须注意条件“k∈N*”,这是在解答数列问题中易忽视的一个陷阱.
【例8】 (08·湖北)已知数列{an}和{bn}满足:a1=λ,an+1=n+n-4,bn=(-1)n(an-3n+21),其中λ为实数,n为正整
3数.(Ⅰ)对任意实数λ,证明数列{an}不是等比数列;(Ⅱ)试判断数列{bn}是否为等比数列,并证明你的结论;(Ⅲ)设0 </a<b,sn为数列{bn}的前n项和.是否存在实数λ,使得对任意正整数n,都有a<sn<b?若存在,求λ的取值范围;若不存在,说明理由.
数列与不等式命题新亮点
例1 把数列一次按第一个括号一个数,按第二个括号两个数,按第三个括号三个数,按第四个括号一个数„,循环分为(1),(3,5),(7,9,11),(13),(15,17),(19,21,23),(23) „,则第50个括号内各数之和为_____.
点评:恰当的分组,找到各数之间的内在联系是解决之道.此外,这种题对观察能力有较高的要求. 例2 设A. bn
Sk+1-2
>2成立. Sk-2
an是由正数构成的等比数列, bnan1an2,cnanan3,则()
S
cnB. bncnC. bncnD. bncn
点评:此题较易入手,利用作差法即可比较大小,考察数列的递推关系. 例3 若对x(,1],不等式(m
m)2x()x1恒成立,则实数m的取值范围()
A
B
D
A. (2,3)B. (3,3)C. (2,2)D. (3,4)
例4四棱锥S-ABCD的所有棱长均为1米,一只小虫从S点出发沿四棱锥的棱爬行,若在每一顶点处选择不同的棱都是等可能的.设小虫爬行n米后恰好回到S点的概率为Pn (1)求P
2、P3的值;(2)求证: 3Pn1Pn
例5 已知函数
1(n2,nN)(3)求证: P2P3„Pn>6n5(n2,nN)
2
4fxx2x.(1)数列
an满足: a10,an1fan,若
1
1对任意的nN恒成立,试求a1的取值范围; 2i11ai
,Sk为数列cn的前k项和, Tk为数列cn的
1bn
n
(2)数列
bn满足: b11,bn1fbnnN,记cn
Tk7
. 10k1SkTk
n
前k项积,求证
例6 (1)证明: ln
1xx(x0)(2)数列an中. a11,且an1
11
an2; n1
2n1n
2①证明: an【专题训练】
7n2②ane2n1 4
aaD.a6a8() D.bn≤cn
()
1.已知无穷数列{an}是各项均为正数的等差数列,则有
aaA.<
a6a8
aaB.
a6a8
aaC.>a6a8
2.设{an}是由正数构成的等比数列,bn=an+1+an+2,cn=an+an+3,则
A.bn>cn
B.bn<cn
</cn
C.bn≥cn
3.已知{an}为等差数列,{bn}为正项等比数列,公比q≠1,若a1=b1,a11=b11,则()
A.a6=b6 A.9 A.S4a5<s5a4
</s5a4
B.a6>b6 B.8 B.S4a5>S5a4
C.a6
(n+32)Sn+1
1C.
40
D.a6>b6或a6
150
4.已知数列{an}的前n项和Sn=n2-9n,第k项满足5 </ak<8,则k=
5.已知等比数列{an}的公比q>0,其前n项的和为Sn,则S4a5与S5a4的大小关系是()
6.设Sn=1+2+3+…+n,n∈N*,则函数f(n)=
A.
120
B.
130
D.
7.已知y是x的函数,且lg3,lg(sinx-),lg(1-y)顺次成等差数列,则
A.y有最大值1,无最小值B.y有最小值
()
1111
C.y有最小值,最大值1D.y有最小值-1,最大值11212
()
D.(-∞,-1∪3,+∞)
8.已知等比数列{an}中a2=1,则其前3项的和S3的取值范围是
A.(-∞,-1
B.(-∞,-1)∪(1,+∞)C.3,+∞)
9.设3b是1-a和1+a的等比中项,则a+3b的最大值为()
A.1()
A.充分不必要条件 11.{an}为等差数列,若
A.11
B.必要不充分条件C.充分比要条件
D.既不充分又不必要条件
()
B.2
C.
3D.4
10.设等比数列{an}的首相为a1,公比为q,则“a1<0,且0<qan”的</q
a1,且它的前n项和Sn有最小值,那么当Sn取得最小正值时,n= a10
B.17
C.19
D.21
12.设f(x)是定义在R上恒不为零的函数,对任意实数x、y∈R,都有f(x)f(y)=f(x+y),若a1=an=f(n)(n∈N*),则数列{an}
的前n项和Sn的取值范围是
1A.,2)
B.[,2]
() 1
C.1)
D.[1]
S13.等差数列{an}的前n项和为Sn,且a4-a2=8,a3+a5=26,记Tn=,如果存在正整数M,使得对一切正整数n,Tn≤M都
n
成立.则M的最小值是__________.
14.无穷等比数列{an}中,a1>1,|q|<1,且除a1外其余各项之和不大于a1的一半,则q的取值范围是________. (a+b)
215.已知x>0,y>0,x,a,b,y成等差数列,x,c,d,y成等比数列,则的最小值是________.cd
A.0
B.1
C.2
D.
416.等差数列{an}的公差d不为零,Sn是其前n项和,给出下列四个命题:①A.若d<0,且S3=S8,则{Sn}中,S5和S6都是
{Sn}中的最大项;②给定n,对于一定k∈N*(k0,则{Sn}中一定有最小的项;④存在k∈N*,使ak-ak+1和ak-ak1同号 其中真命题的序号是____________.
17.已知{an}是一个等差数列,且a2=1,a5=-5.(Ⅰ)求{an}的通项an;(Ⅱ)求{an}前n项和Sn的最大值.
18.已知{an}是正数组成的数列,a1=1,且点(an,an+1)(n∈N*)在函数y=x2+1的图象上.(Ⅰ)求数列{an}的通项公式;(Ⅱ)
若列数{b}满足b=1,b=b+2an,求证:b ·b<b2.
</b2.
n
n+1
n
n
n+2
n+1
19.设数列{an}的首项a1∈(0,1),an=
3-an1
n=2,3,4,…. 2
(Ⅰ)求{an}的通项公式;(Ⅱ)设bn=a3-2an,证明bn
(Ⅰ)求{an}的通项公式;(Ⅱ)若数列{an}中b1=2,bn+1=
3bn+4
n=1,2,3,….2
321.已知二次函数y=f(x)的图像经过坐标原点,其导函数为f(x)=6x-2,数列{an}的前n项和为Sn,点(n,Sn)(n∈N*)均在函
数y=f(x)的图像上.(Ⅰ)求数列{an}的通项公式;
1m
(Ⅱ)设bn=,Tn是数列{bn}的前n项和,求使得Tn<对所有n∈N*都成立的最小正整数m
20anan+1
22.数列
,是常数.(Ⅰ)当a21时,求及a3的值;(Ⅱ)2,)an满足a11,an1(n2n)an(n1,
数列an是否可能为等差数列?若可能,求出它的通项公式;若不可能,说明理由;(Ⅲ)求的取值范围,使得存在正整数m,当nm时总有an
一、 利用导数证明不等式
(一)、利用导数得出函数单调性来证明不等式
0.
利用导数处理与不等式有关的问题
某个区间上导数大于(或小于)0时,则该单调递增(或递减)。因而在证明不等式时,根据不等式的特点,有时可以构造函数,用导数证明该函数的单调性,然后再用函数单调性达到证明不等式的目的。
1、 直接构造函数,然后用导数证明该函数的增减性;再利用函数在它的同一单调递增(减)区间,自变量越大,函数值越大
(小),来证明不等式成立。
x2例1:x>0时,求证;x-ln(1+x)<0
2、把不等式变形后再构造函数,然后利用导数证明该函数的单调性,达到证明不等式的目的。 例2:已知:a,b∈R,b>a>e, 求证:ab>b a, (e为自然对数的底)
(二)、利用导数求出函数的最值(或值域)后,再证明不等式。
导数的另一个作用是求函数的最值. 因而在证明不等式时,根据不等式的特点,有时可以构造函数,用导数求出该函数的最值;由当该函数取最大(或最小)值时不等式都成立,可得该不等式恒成立。从而把证明不等式问题转化为函数求最值问题。 例
3、求证:n∈N*,n≥3时,2n >2n+1 例
4、g
x2(b1)2的定义域是A=[a,b),其中a,b∈R+,a
(x)(1)Aax
若x1∈Ik=[k2,(k+1)2), x2∈Ik+1=[(k+1)2,(k+2)2)
3、利用导数求出函数的值域,再证明不等式。 例5:f(x)=
41
3x-x, x1,x2∈[-1,1]时,求证:|f(x1)-f(x2)|≤
33
二、利用导数解决不等式恒成立问题
不等式恒成立问题,一般都会涉及到求参数范围,往往把变量分离后可以转化为m>f(x) (或m
a
(9(aR),对f(x)定义域内任意的x的值,f(x)≥27恒成立,求a的取值范围
x
nn
1例
7、已知a>0,n为正整数, (Ⅰ)设y=(xa),证明yn(xa);
n
(Ⅱ)设fn(x)=xn-(xa),对任意n≥a,证明f ’n+1 (n+1)>(n+1)f ’n(n)。
例
6、
已知函数f(x)
三、利用导数解不等式 例8:函数
ax(a0),解不等式f(x)≤1
第三篇:第二讲 函数的极限典型例题
第二讲
函数的极限
一
内容提要
1.函数在一点处的定义
xx0limf(x)A0,0,使得x:0xx0,有f(x)A. 右极限
xx0limf(x)A0,0,使得x:0xx0,有f(x)A. 左极限
xx0limf(x)A0,0,使得x:0x0x,有f(x)A. 注1 同数列极限一样,函数极限中的同样具有双重性.
注2 的存在性(以xx0为例):在数列的“N”定义中,我们曾经提到过,N的存在性重在“存在”,而对于如何去找以及是否能找到最小的N无关紧要;对也是如此,只要对给定的0,能找到某一个,能使0xx0时,有f(x)A即可.
注3 讨论函数在某点的极限,重在局部,即在此点的某个空心邻域内研究f(x)是否无限趋近于A.
注4 limf(x)Alimf(x)limf(x)A.
xx0xx0xx0n注5 limf(x)A{xn}{xn}|xnx0,且xnx0,有limf(xn)A,称为
nxx0归结原则――海涅(Heine)定理.它是沟通数列极限与函数极限之间的桥梁.说明在一定条件下函数极限与数列极限可以相互转化.因此,利用定理必要性的逆否命题,可以方便地验证某些函数极限不存在;而利用定理的充分性,又可以借用数列极限的现成结果来论证函数极限问题.(会叙述,证明,特别充分性的证明.) 注6 limf(x)A00,xx00,x:0xx0,有f(x)A0.
2 函数在无穷处的极限 设f(x)在[a,)上有定义,则
limf(x)A0,xXa,Xa,Xa,使得x:xX,有f(x)A. 使得x:xX,有f(x)A. 使得x:xX,有f(x)A. xlimf(x)A0,limf(x)A0,x注1 limf(x)Alimf(x)limf(x)A.
xxx 1
n注2 limf(x)A{xn}{xn}|xn,有limf(xn)A.
nx3 函数的有界
设f(x)在[a,)上有定义,若存在一常数M0,使得x[a,),有f(x)M,则称f(x)在[a,)上有界. 4 无穷大量
xx0limf(x)G0,0,X0,使得x:0xx0,有f(x)G. 使得x:xX,有f(x)G. limf(x)G0,x类似地,可定义limf(x),limf(x),limf(x),limf(x)等.
xx0xx0xx0xx0注 若limf(x),且0和C0,使得x:0xx0,有f(x)C0,xx0则limf(x)g(x).
xx0
特别的,若limf(x),limg(x)A0,则limf(x)g(x).
xx0xx0xx05 无穷小量
若limf(x)0,则称f(x)当xx0时为无穷量.
xx0注1 可将xx0改为其它逼近过程.
注2 limf(x)Af(x)A(x),其中lim(x)0.由于有这种可以互逆的表xx0xx0达关系,所以极限方法与无穷小分析方法在许多场合中可以相互取代. 注3 limf(x)0,g(x)在x0的某空心邻域内有界,则limf(x)g(x)0.
xx0xx0注4 limf(x)0,且当x足够大时,g(x)有界,则limf(x)g(x)0.
xxx0注5 在某一极限过程中,无穷大量的倒数是无穷小量,非零的无穷小量的倒数是无穷大量. 6 函数极限的性质
以下以xx0为例,其他极限过程类似. (1)limf(x)A,则极限A唯一.
xx0(2)limf(x)A,则,M0,使得x:0xx0,有f(x)M.
xx0(3)limf(x)A,limg(x)B,且AB,则0,使得x:0xx0,xx0xx0有
f(x)g(x)
2 注
这条性质称为函数的“局部保号性”.在理论分析论证及判定函数的性态中应用极普遍. (4)limf(x)A,limg(x)B,且0当0xx0时,f(x)g(x)则xx0xx0AB.
(5)limf(x)A,limg(x)B,则
xx0xx0xx0limf(x)g(x)AB
limf(x)g(x)AB
limxx0f(x)g(x)xx0AB(B0)
要求:①进行运算的项数为有限项;②极限为有限数. 7 夹逼定理 若0,使得x:0xx0,有f(x)g(x)h(x),且
xx0xx0xx0limf(x)limh(x)A,则limg(x)A.
8 Cauchy收敛准则
函数f(x)在x0的空心邻域内极限存在0,0,使得x,x,当0xx0,0xx0时,有f(x)f(x).
9 无穷小量的比较
设lim(x)0,lim(x)0,且limxx0xx0(x)(x)xx0k,则
(1)当k0时,称(x)为(x)的高阶无穷小量,记作(x)o(x); (2)当k时,称(x)为(x)的低阶无穷小量; (3)当k0且k时,称(x)为(x)的同阶无穷小量.
特别的,当k1时,称(x)和(x)为等价的无穷小量,记作(x)~(x).
注1 上述定义中,自变量的变化过程xx0也可用x,x,x,xx0,xx0之一代替. 注2 当x0时,常见的等价无穷小有:
sinx~x,tanx~x,1cosx~
x22,e1~x,ln(1x)~x,(1x)xm1~mx
注3 在用等价无穷小替换计算极限时,一般都要强调限定对“乘积因式”的等价替换.因为:
若(x)~(x)(P),则
limPf(x)(x)limPf(x)(x)f(x) limP(x)(x)(x)或
limg(x)(x)limg(x)(x)PP(x)(x). limg(x)(x)
(P为某逼近过程)
P而对于非乘积因式,这样的替换可能会导致错误的结果.
注4 在某一极限过程中,若(x)为无穷小量,则在此极限过程,有
(x)o(x)~(x). 10 两个重要极限 (1)limsinxx1x01;
(2)lim(1x)xe.
x0
二、典型例题
例 用定义证明下列极限: (1)limx(x1)x12x112;
12(2)limxx1x2x.
例 limf(x)A,证明:
xx0(1)若A0,则有lim31f(x)2xx01A2;
(2)lim3xx0f(x)A.
例 设f(x)是[a,b]上的严格严格单调函数,又若对xn(a,b](n1,2,),有limf(xn)f(a),试证明:limxna.
nn
例 函数f(x)在点x0的某邻域I内有定义,且对xnI(xnx0,xnx0),且 0xn1x0xnx0(nN),有limf(xn)A,证明:limf(x)A.
nxx0
例
设函数f(x),x(0,1),满足f(x)0(x0),且
f(x)f()o(x)(x0)
2x则
f(x)o(x)(x0)
问:在题设条件下,是否有f(0)0?答:否.如f(x)01x0x0.
例
设函数f(x)在(0,)上满足议程f(2x)f(x),且limf(x)A,则
n
f(x)A(x(0,)).
例
求下列函数极限 (1)limn0xb(a0,b0);
axxb(2)lim(a0,b0);
n0ax12exsinx(3)lim. 4n0x1ex 8
例
求下列极限 (1)lim1tanxx1tanxn0e1;
(2)lim1cosxx)x;
n0x(1cosln(sin22(3)limxe)x2xn0ln(xe)2x.
例
求下列极限: (1)limn0etanxexsinxxcosx;
(2)lim1cosxcos2x3cos3xx2.
n0 10
例
求下列极限: (1)limx1xlnxx;
n1(2)lim(ax)ax2xx.
n0
例
求下列极限:
1(1)lim(cosx)n0ln(1x)2;
11 (2)lim(sinn1xcos1x);
nx1xa(3)设ai0(i1,2,,n),求limn0ax2ax. nxn
例
(1)已知lim(1xaxb)0,求常数a,b;
n33ln(1f(x)(2)已知limn0sin2xx31)5,求limn0f(x)x2.
第四篇:利用bode图求传递函数例题
例题:已知最小相位系统开环对数频率特性曲线如图所示。试写出开环传递函数Gk(s) 。
解:
1) ω<ω1的低频段斜率为[-20],故低频段为K/s。
ω增至ω1,斜率由[-20]转为[-40],增加[-20],所以ω1应为惯性环节的转折频率,该环节为11 。
11s1ω增至ω2,斜率由[–40]转为[–20],增加[+20],所以ω2应为一阶微分环节的转折频率,该环节为2s1 。
11ω增到ω3,斜率由[-20]转为[-40],该环节为,ω>ω3,斜率保持不变。
31s1故系统开环传递函数应由上述各典型环节串联组成,即
K(Gk(s)s(2) 确定开环增益K 当ω=ωc时,A(ωc)=1 。
2s1)1
11s1)(3s1)K( 所以 A(c)12c)211K121c1
c(11c)2(3c)21c1c故 K2c 所以,Gk(s)111s(s1)(s1)13
2c1(s1)12
练习:
最小相位系统的对数幅频特性如下图所示,试分别确定各系统的传递函数。
(a)
(c)
a:G(s)10s(s1)
b:G(s)100(10s1)(s1)
cG(s)100(0.5s1)(0.2s1)
(b)
第五篇:函数的表示法教案_h
(计划一个课时,可根据实际情况适当调整) §1.2.2函数的表示法
一、教学目标: 知识与技能
(1)明确函数的三种表示方法;
(2)会根据不同实际情境选择合适的方法表示函数; (3)通过具体实例,了解简单的分段函数及应用. 过程与方法
通过引导学生回答问题,培养学生的自主学习能力;通过画图像,培养学生的动手操作能力; 情感态度与价值观
通过一些实际生活应用题,让学生感受到学习函数表示的必要性,并体会数学源于生活用于生活的价值;通过函数的解析式与图像的结合,渗透数形结合思想方法。
二、教学重难点:
重点:函数的三种表示方法,分段函数的概念.
难点:根据题目的已知条件,写出函数的解析式并画出图像
三、教学过程:
(一)、复习引入:
1.函数的定义,函数的三要素(函数相同的条件). 集合A集合B 当对应关系符合下面的条件之一时,则称f:A→B为从集合A到集合B的一个函数 (1)11(集合A和B一一对应)
(2)2或者更多1(集合A多个对B一个) 误区:12或者更多
× 构成函数的三要素: 定义域、对应关系和值域 函数相同:当且仅当它们的定义域和对应关系完全一致,而与表示自变量和函数值的字母无关。
2.函数图象的基本方法画法(列表、描点、作图.) 本节将进一步学习函数的表示法和函数图象的作法
(二)、讲解新课: 函数的三种表示方法:
老师:同学们,回忆一下在初中时,我们学习过什么函数? 一次函数: 二次函数: 反比例函数:
教师引导学生归纳函数解析法的特点。
(1)解析法:把两个变量的函数关系,用一个等式来表示,这个等式叫做函数的解析表达式,简称解析式。
说明:①解析式法的优点是:函数关系清楚,容易从自变量的值求出其对应的函数值,便于用解析式来研究函数的性质;
②中学里研究的主要是用解析式表示的函数。
以下是我国1992年-1998年的国内生产总值(单位:亿元) 年份 1992 1993 1994 1995 1996 1997 1998
生产总值 26651.9 34560.5 4670.0 57494.9 66850.5 73142.7 76967.1
老师:根据我们学习的函数的概念,我们知道年份与生产总值之间构成了函数。而我们仅仅是通过一个图表就知道生产总值与年份之间的关系,像这种函数的表示法,我们称为列表法。 (2)列表法:列出表格来表示两个变量的函数关系式。例如:数学用表中的平方表、平方根表、三角函数表,以及银行里常用的“利息表”。
说明:列表法的优点是:不必通过计算就知道当自变量取某些值时函数的对应值。 老师:另外,在初中我们还学习了一次函数,二次函数,反比例函数的图像。
老师:像这种用图像来表示函数的方法叫做图像法。
(3)图象法:用函数图象表示两个变量之间的关系。例如:气象台应用自动记录器,描绘温度随时间变化的曲线就是用图象法表示函数关系的。(见课本P53页图2-2 我国人口出生变化曲线)
说明:图象法的优点是能直观形象地表示出函数的变化情况。
(三)、例题讲解
例
1、例3某种笔记本的单价是5元,买个笔记本需要元,试用三种表示法表示函数. (先学生独自做,老师做个别辅导) 首先此函数的定义域是数集{1,2,3,4,5},那么由题意可知用解析法可将函数表示为y=5x,。通过计算,用列表法可将函数表示为 笔记本数x 1 2 3 4 5 钱数y 5 10 15 20 25
在直角坐标系上描出各点可得用图像法将函数表示为
注意:
①函数图象既可以是连续的曲线,也可以是直线、折线、离散的点等等; ②解析法:必须注明函数的定义域; ③图象法:是否连线;
④列表法:选取的自变量要有代表性,应能反映定义域的特征. 例
2、(课本23页例4)
例
3、国内投寄信函(外埠),邮资按下列规则计算:
1、信函质量不超过100g时,每20g付邮资80分,即信函质量不超过20g付邮资80分,信函质量超过20g,但不超过40g付邮资160分,依次类推;
2、信函质量大于100g且不超过200g时,付邮资(A+200)分(A为质量等于100g的信函的邮资),信函质量超过200g,但不超过300g付邮资(A+400)分,依此类推. 设一封x g(0
解:这个函数的定义域集合是,函数的解析式为
它的图象是6条线段(不包括左端点),都平行于x轴,如图所示. 新概念教学:在上例中,函数对于自变量x的不同取值范围,对应法则也不同,这样的函数通常称为分段函数。
注意:分段函数是一个函数,而不是几个函数. 例
3、课本24页例5 例
4、作出分段函数的图像
解:根据“零点分段法”去掉绝对值符号,即:
=
作出图像如右图 作函数的图象. 解:∵
∴ 这个函数的图象是抛物线 介于之间的一段弧(如图).
(四)、课堂练习:
2、一个面积为100cm2的等腰梯形,上底长为xcm,下底长为上底长的3倍,则把它的高表示成x的函数为
例1:1)设f(x)是一次函数,且f[f(x)]=4x+3,求f(x)
k=4,kb+b=3
k=2,b=1或k=-2,b=-3
f(x)=2x+1或f(x)=-2x-3
(五)、小结
函数的三种表示方法及图像的作法,以及如何求函数解析式
(六)、课后作业:课本第28习题1.2:A组习题4,6,7,12,13 补充:
1、作出函数的函数图像 解: 步骤:(1)作出函数y=(2x(3的图象
(2)将上述图象x轴下方部分以x轴为对称轴向上翻折(上方部分不变),即得y=|(2x(3|的图象
f(x+1)=x+2(x+1)=x+2x+2
(七)、板书设计(略)